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A STABILITY PROPERTY OF THE UNIT VECTOR 
BASIS OF L 

BY 

A. SZANKOWSKI AND M. ZIPPINt 

ABSTRACT 

Let {e.} be the unit vector basis of Io. l < p  <o~, and let x~ =aMe. -b.e~.,. 
Necessary and sufficient conditions are given for the operator T: lp--* 
span {x. } defined by Te, = x, to be invertible. 

1. Introduction 

In this pape r  we p rove  a stabil i ty t h e o r e m  for  the unit  v e c t o r  basis  of  lp, 

1 < p < oo. T w o  sequences  {x, } and {y, } of  e l emen t s  of  a B a n a c h  space  X are  

cal led equivalent  if fo r  e v e r y  s equence  {a, } of  scalars ,  Ea,xn c o n v e r g e s  if and  

only if Ea,yn is convergen t .  Stabi l i ty  t h e o r e m s  fo r  bases  in B a n a c h  spaces  

usual ly  s ta te  that  if {e,} is a basis  and {xn} is " n o t  f a r "  f r o m  {e,}, then  {x,} is 

equ iva len t  to {en } or  has p rope r t i e s  similar  to those  of  {e,}. H o w e v e r ,  in mos t  

cases  (cf. [1], th. 1) "no t  f a r "  means  that ,  in some  un i fo rm way ,  the e l emen t s  of  

{xn} are  c lose  to those  of  {e,} in norm.  In con t ras t  to these  c lass ical  s tabi l i ty  

p rope r t i e s  we will d i scuss  here  a s tabil i ty p r o p e r t y  where  " n o t  f a r "  has  a 

combina to r i a l  mean ing  ra ther  than  a geome t r i c  one.  

Le t  {e, } deno te  the unit  vec to r  basis  of  lp, 1 < p < oo. A sequence  {x, } in lp is 

cal led a lmos t  diagonal  if for  each  n = 1 x° = ane, - b~e,+,.We call {x,} semi -  

-normal ized  if 0 <  inf,  Ilxo II---- sup~ IIx~ II < ~ -  Let  {x,} be  a s equence  of  ele- 

m e n t s  of  a B a n a c h  space  X and let {[, } C X*.  The  sy s t em {x°,[, } is cal led a 

b o u n d e d  b ior thogonal  s y s t e m  if )~(xj)= 8~.i and bo th  {x,} and {f,} are semi-  

-normal ized .  

Our  main  result  is the fol lowing:  

THEOREM. Let  {x,} be a semi -normal i zed  a lmos t  diagonal  sys t em in lp, 

t < p < oo. Then the fo l lowing s ta tements  are equivalent:  

(a) there is a sequence  {/,} C l* such that  {xo, fn} is a bounded  biorthogonal  

sys tem.  
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(b) {x.} forms a basis (or span{x.}. 

(c) {x.} is equivalent to the unit vector basis {e.}. (span{x.} denotes the 

closed linear subspace spanned by {x.}). 

We conclude the introduction with the following three remarks: 

REMARK 1. Let {x.} and {y°} be bases of the Banach spaces X and Y 

respectively. Then {x. } and {y. } are equivalent if and only if the map T: X ~ Y 

defined by T(Et,x,)= Zt,y~ is an isomorphism of X onto Y. 

REMARK 2. The Theorem is false for p = I. Indeed, let x. = e. - e . . i ,  let 

{~b.} be the unit vector basis of Co and p u t / .  = ~:7_, ~bi. 

Then ]Ix. II = 2 and II.f-II = t for all n and f,(x~) = 6~.j. Hence {x., f.} forms a 

bounded biorthogonal system and it is easy to check that {x.} is a basis for 

span{x.}. However. the map T defined by Te~ =x~ is not an isomorphism. 

because fiE;'=, x~ II = 2 and IIE~'=, e, [1 = n for all n. 

REMARK 3. The Theorem is trivially true for Co. Indeed, let 

sup{la~ I,{b. [}= M < 0% then IlY.t~x~ II < IIEa,t~ e, [I + IIEb,t~e~+~ll <- 2M[l~t~e, II and 

hence Y~t~x~ converges whenever t~ ~ 0. On the other hand. if Et~x~ converges 

then t~ ---> 0 because inf. [Ix. [I > 0. 

2. The equivalence ( a ) ~  (b) and a preliminary lemma 

We begin this section by proving that the equivalence (a)~->(b) holds in a 
quite general situation. 

LEMMA 1. Let {e.} be a basis of a Banach space E. lie. t[ = i, and let 

x. =a.e .  -b.c .+, .  Assume that 0 <  inf~'/a, l , lb.  I} <-- sup. ~la. I,Ib. l}<--M < 

~. Then {x.} is a basis of span{x.} if and only q there exist functionals 

{/.} C E* such that {x.,/.} form a bounded biorthogonal system. 

PROOF. It is well known (cf. [2], p. 68) that if {x.} is a basis of X --- span{x.} 

then there exist {f.} C X* such that ~(x~) = 6,.j and sup. IIx. tl Ill. tl < ~- Con- 

versely, let {x., f. } be a bounded biorthogonal system with sup. Ill. II <-- M. Let P. 

denote the projection defined by P. (Y.7 t,e,) = Y7 t~e,. It is known (cf. [2], p. 68) 

that sup. liP. [] = K < ~. Now, for any m < n and each Y~7=, t,x~ E X we have 
that 



218 A. SZANKOWSKI AND M. ZIPPIN Israel J. Math., 

~ t~x, <= t,x~ + tmbm = 

= P . . ( ~ t , x , ) +  I bmfm(~_,t,x~) <=K ~t ,x ,  + 

+ M  z ~t ,x ,  <-(M2+'K) ,=~t,x, . 

This inequality proves that {x.} is a basis in view of ([2]. p. 69). The proof is 

thus complete. 
Our next step is to reduce the proof of the Theorem to the case where 

inf. {la. I.Ibn I}>0.  In order to accomplish this we first prove 

LEMMA 2. Let {x.} be an almost diagonal sequence in lp. 1 < p < ~. and let 
{x.,[.} satisfy (a). Then there exists a constant d > 0  such that {x.} is 
equivalent to the sequence {y.} defined as follows : y. = x. if l a. I. lb. I ->- d;  y. = 

a.e. if [ b . l < d  and y. =b.e.÷, if [ a . l < d .  

PROOF. We may assume without loss of generality that inf. IIx. II -> 1. Note  

first, that if d is small enough and both min{ la . [ . Ib . I }<d and 

min{I a.÷l I. lb. ÷, I} < d are satisfied then either l a. ~, I < d or lb. I < d. Indeed, if 

both ]a.÷,l --> d and I bn I -> d then ]a. [ < d and I bn÷,r < d; let f. = 
(c,,c2, c3 , - . . )  E lq = l* .Then  1 =fn(x . )  = c.a. - c.÷,b. <= dM + l c . + , l M  where 

M -- M a x  {sup.  llfoll, sup .  llx. ll}. Hence I c ° + , I > - M - ' ( 1 - d M ) .  On the other 
hand, 0 = f. (x.+0 = c.+~a.÷~ - c.+2b.., and therefore [c.+, I =< 

[c.+2b.+, I" [a.÷, I-' --< d M .  (1 - d p)-~. It follows that M - ' ( 1  - d M )  <- 

dM(1 - d P )  -~ which is absurd if d = d(M) is small enough. 

In view of this remark and disregarding trivial cases we assume that there is 

an increasing sequence {p (n)} of integers and d > 0 such that 

(2) Min{lakl, [bk I}-- -->d for all kf~{p(n)} 
(3) Min{lap(., I, I b ~ . , I } < d  and Max{la~,.,I. Ib , , . , l}=>(1-d~)  ~ for all n. 

(4) if p ( n + l ) = p ( n ) + l  then either Ibp,n,l<d or la~,.,÷,l<d. We will 

show that the sequence {yk} defined by 

y~=xk if k ~ { p ( n ) }  

=ap(.)ep(., if k = p ( n )  and [bp( . ) i<d 

=bpt.~ep(.,+~ if k = p ( n )  and [ap(.~[<d 
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is equiva len t  to {xk}. Put  q ( n ) = p ( n )  if [b,t.)l<d and q ( n ) = p ( n ) - I  if 
q ( n + l )  fap(.)[ < d and let II. = span{y~}i=~,÷~. 

It is easy  to check  that  for  each  m < n. x E Ym and y C 1t. we have  that  

(5) Ilx + y F  = [[xll" +[lyl[" 

f t  ] .q (n  + I) Also, for  each  n and any sequence  t.~J~=qt.)+, of  scalars we have  

(6) ,=q,.,+ t,(x, - y,) = ([ap,n,to(.,]" + ]b.t.+,,to,.+,,IP)~ 

if q ( n ) = p ( n ) - I  and q ( n + l ) = p ( n + l )  

= la.,.,t~,o,I if q ( n ) = p ( n ) - I  and q ( n + l ) = p ( n + l ) - I  

= 0  if q ( n ) = p ( n )  and q ( n + l ) = p ( n + l ) - I  

= Ib, c.+,,to(.+,)+,[ if q ( n ) = p ( n )  and q(n + l ) = p ( n  + 1). 

It fo l lows that  

q'E" I/. )1 t~(x~ - y~) <- d (.~(Y~t~x~ 
= q ( n ) + l  

+dlf~n+,)(Et,x,)l<=2dM ~ t,x, ; 
i=q(n)+l 

and the re fo re  we get that  

q("+') tlxi a(-+l, + 2 d M )  q¢"+') (7) (1 - 2DM) ~ -<- ~ t,y, [[ _-< (1 tixi I 

i = q ( n ) + l  i = q ( n ) + l  i=q(n)+l 

In v iew of  (5). (6) and (7) we have  that  

i = q ( n ) + [  = i=q(n)+l 

hence  E --< E 
n = l  i=q(n)+l n = |  i = q ( n ) + l  

+ 
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i = q ( n ) + l  i=q(n)+l 
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+ + 2 d M  (1 - 2dM)- ' ]  . 

qt.+o t~yi X • 
n = l  i = q ( n ) + l  

Similarly, one gets that 

=< + (2dM)2(1 - 2 d M ) - '  
i=q(n)+l t=q(n)+l n = l  i=q(n)+l 

Assuming that d is small enough these inequalities prove the equivalence of 

{x.} and {y.}. Lemma 2 is thus proved. 

COROLLARY 1. Let  {xn} be a semi -normal i zed  a lmos t  diagonal  sequence  in 

lp, l < p < ~. Then there is a cons tan t  d > 0 such that  {x, } is equivalent  to the 

sequence  {z,} defined as fo l lows:  

z. =x~ if min{la,  l, I b . l } ~ d  

z . = d e . + b . e . + ,  if l a . I < d  

z . = a . e . + d e . + ~  if Ib.l<d. 

PROOF. Define {y. } as in Lemma 2, then {x. } is equivalent to {y. } if d is small 

enough. Therefore {y.} is also a semi-normalized almost diagonal sequence 

satisfying (a). Using inequalities similar to (5), (6) and (7), we get that {y.} is 

equivalent to {z.}. 

3. Proof of (a) ~ (c). 

In view of Corollary I it suffices to consider almost diagonal sequences {x. } 

with x. = a~e. - b . e . + l  where O < i n f .  {lan [, lb~ [}. Therefore the proof of the 

Theorem will be complete if we prove the following: 

PROPOSITIOn. Let  {e.} be the unit vec tor  basis  o f  l., 1 < p  < ~ ,  and  let 

X .  = e. - b.en÷, where inf  lb. [ = d > O. Then the fol lowing assert ions are equiv- 

alent : 
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(A) {x.} is equivalent to {e.}. 

(B) there is a sequence {f.} C l* such that {x.,f .} forms a bounded 

biorthogonal system. 

(C) There is a constant K > 0 such that ] b. I <- K for all n and either 

o r  

(C:) sup 1 + b, b, 
k = l  i = k  i=l 

< K where p-~ + q-~ = l. 

PROOF. The  implicat ion (A) ~ (B) is trivial. Le t  us p rove  (B) -~ (C). It is 

easy  to see that  e i ther  span {x. } = I, or span {x. } is a subspace  of  cod imens ion  1 

of lp. If span {x.} = I, one can easily compu te  the b ior thogonal  funct ionals  f.  
n - I 

and ver i fy  that  f. = u. + E~z'~ ( l-I b~)uk where  u. deno tes  the n - th  unit  vec to r  of  
i = k  

lq = l* ( p - ' +  q - ~ =  1). It fol lows that  

(8) l + E --lifo II q =< 

where  A =sup . [ I f . ] ] .  If s p a n { x . } ~ l ,  then there  is a funct ional  f which 

vanishes  on span{x.}.  It is easy  to check  that 

and hence  the series 

converges .  Also, fo r  each  n, 
n--lE (v~n--I ) 

for  some cons tan t  c.. It fo l lows that 

where  A = sup.  IIf~ II. Put  
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T. = 1+ ~] tk = 
i = l  "= i : k  " :  

and 
k--I [ ~2~ q 

Sk = 1 + ~] bi , 
./=1 i = j  

then we have that 

Israel J. Math., 

n--I q 
(lO) II/.11 q =  c . +  _l~b, T.+Ic.I~t .<-A ". 

One can easily verify that the minimum of the left hand side of (10) is attained 

at 

c . =  -(]~=, b,)T'./(q-')(T'./("-'+t'./("-'))-'. 

It follows that 

"-[~ b~ q(tq/(q-')T q Tq/(q-')tq)(T'/~q-'~ + t~/(q-')) -' A q ---- IlL I1" -= I + i=l 

= (T"~- '+ t'."-')-'. 
i=l 

Since 

S"=l~b~i=~ qT. and t. + T.=[If.]]  q 

we get that for all n = 1 

where K o = 2 q - ' A  q [[L [I q. This proves ( B ) ~  (C). It remains to prove the 

implication ( C ) ~  (A). Assume first that (C,) is satisfied and let T be the 

operator  defined by Te. = x.. It is clear that 11T [[ _-< 2K and we have to show that 

T is invertible. Note that T*[. = u. and hence, it suffices to show that the 

operator  B:  I. ~ I. defined by Bu. = / .  is bounded. Put B," = IIT=ibj, then,be- 

cause f. = u. + ET-,' BT-'ui, the operator  B has the following matrix representa- 

tion with respect  to the basis (u.):  
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B = 

- I Bll B ~  

1 B ~  

1 

0 

B~ . . . .  B ? - ' . . . -  

B~ B T - ' -  • • 

B~ 

1 

1 

Let  S o =  I = the identi ty on lq and let 

S~ = 

0, 0 , . . . , 0  B,  ~ 0 

B~ ÷, 

0 B~ +~ 

for  k _-__ 1. Obvious ly  [I Sk II ~ max,>, [ B ~ +'- '[  and B = 227=0 Sk. We will p rove  that 

Eo[[Sk [[ converges  by showing  that 

(12) E~=, max,~ , lB~÷' - ' l  is convergen t .  

It fol lows f rom (C,) that  

(13) K-<_27=,[BT[" for  all n. 

Let  m be an integer for  which  

(14) me-q > K 

and let i ( n ) = m a x { l < j = < n :  [BT[=<e- '} .  

(13) and (14) imply that  

(15) i(n)>->_n-m. 

Put  n = i(n,O), i(n) = i(n, 1) and i (n,k + I) = i ( i (n,k))  for  k = 1. We thus have  

that  i (n, 0) => i (n, 1) >= i (n, 2) --- - - -  --- i (n, s) -> 1 where  

(16) i ( n , k ) - i ( n , k  + l ) N m ,  i ( n , s ) - 1  <=m and Ini~.":~'+,,l--<e-'. 

Given  j =< n we can find k such that  i(n, k + 1) < j <= i(n, k) and so i(n, k ) -  j < 

m, and k >= E((n - j ) / m )  where  E(r)  denotes  entier  r fo r  eve ry  real r. Since 
n - -  s - - I  ~ i ( n , k )  "~£11 i ( n ' s )  I~ ~t Bj  - (flk=0"-',-.k+,~/~"~i ~.~j we have  that  
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(17) [BTI<=K m e x p ( - E ( ( n - ] ) / m ) ) .  
It fo l lows that max,__-, [B~+'-'I <= K "  exp(  - E ( k  - I ) /m))  hence  

liB II~ I + K ~ ~ e x p ( -  E((k - l ) / m ) )  = c .  
k = l  

This  p roves  that T is invert ible and that  fo r  any  n and any  sequence  (sj) of  

scalars we have  that  

(18) -' 2 j= sjxj j~  sje~ c sjej <= 2 <= 2K  . 
i = l  

This p roves  ( C , ) ~  (A). N o w  assume (C~). For  each  l = k _ < - n  put  g~ = 

e~+2_~ - b~'+,-keo+,-k = -- b~'+,-kx.+,-~ and let f, = u~+,./2 = u. + b~'u.+,, and,  for  

/k = b n + 2 - k U n  + 3 - k  - t -  b .  +2-kb. +3-k . + 4 - - k  71- " "1- 2 _-< k _-_N n, le t  U.+2-E "t- -I --I -1 U " " 

(l-l~2~b~+,_k+;)U.+,. 
It fo l lows f rom (C2) that 

Ilfkllq=l÷lb.+2-~l-'+lb~+~-~b.+,-,l -~ + " ' ÷  Y~b.+,-k+i-" 
j= 

(19) 

= bj -< sup bi bj < K. 
j = l  i =  - k  j = t  j = t  "= 

It fo l lows that  (£k)7,=, is an a lmost  diagonal sequence  with respec t  to the basis 

(eo +2-k )~-2', which is a unit vec to r  basis of l ~ +'. Moreover ,  (C2) implies that  {~k, ~ } 

is a bounded  bior thogonal  sys tem such that  

II/~ [[~ = I + ~'~ =< g where  /~, = b.-'.2_, and K - '  ~/~, _-< d - ' .  
j = l  i=j 

H e n c e  the a rgument  for  (C,) -~ (A) shows that 

c- '  i='~ s~e..2_~ <<- ~ s , ~ , l < 2 d  - '  ~ s~e.+z-, I 

fo r  some cons tan t  c = c(d.  K)  independen t  on n. Since ~k = - -b~ ' , -k  " X..j-E 
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we get that {x.} is also equivalent to {e,}. This completes the proof of the 

Proposition and so the Theorem is fully proven. 

4. An application to quadratic forms 

Let R = (ri.j) be an infinite real symmetric matrix and let F = F ( s , ,  s2,-" ") = 

E~Ejrljs~s~ be the quadratic form wich corresponds to R. F is said to be positive 

definite if there is a constant c > 0 such that 

(20) F(s~, s2, ' '  ")>= c(,_~ sQ 

for all sequences of reals {s,}. We are interested in the problem, when is the 

quadratic form F ( s ~ , s z , . . - )  = E.ot~s2-2E7=~ [3~s,s,+, which corresponds to the 

matrix 

R = 

m 

a, - /3 ,  0 

- ~ ,  a~ -t3~ 

- ~  ~ -/3, 
**, 

- -  ~ 3  O~4 

", *, 

positive definite? It is easy to see that "small"  changes in the values of al and/3i 

do not affect the positivity of F, therefore we will state our result as follows: 

COROLLARY 2. Le t  F = F ( s , , s 2 , ' " ) = E T c t l s 2 - 2 E T = t [ 3 i s , s , + ,  with 0 < d =  

inf.{Ja.J. I/3.1}<_ - sup.{Ja.I.  I/3.1} = M < ~ .  Then F is posi t ive definite if and  

only if  the fol lowing condi t ions  are satisf ied 

(Do) Put  a , = 0 .  b , = a l j  n and for  n>=l let a.+,=/3.b~ '  and b.+,= 

(a.+, - a2.+,) ~. Then there is a posi t ive  cons tan t  K such that  a . . ,  - a~.+, >- K 2 and 

either 

(D,) 

o r  

(D2) 

t 2 t sup 1 + ~--2 b,a -~ i < oo 
n = i = k  

sup 1 + b~a7 ~ a~b7 ~ < oo. 
k ~ 2  i = k  t= l  
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PROOF. Let (Do) be satisfied, then b~a,+, =/3, and therefore F ( s , , s 2 , . . . ) =  

Z7(a~+b~)s~-2Y.b~a,+~s~s~+,.  We also have that 0<inf._-,{la,+~l, l b . I } -  < 

sup .~{ la ,  [ , I b . [ } < ~  and hence if x .  = a , e , - b , e , + ,  then, in the /2-norm 

IIEsix,[I 2= F ( s , ,  s z , . . . ) .  It follows that F is positive definite if and only if the 

operator T: lz ~ span{x,} defined by Te~ = x, is invertible. We know by the 

Proposition that T is invertible if and only if either (C3 or (C2) is satisfied (with 

b~/a~ replacing b~ there). This proves the sufficiency of our condition. Now 

suppose that F is positive definite. Then putting sj =/3~b T 2, s. = I and s~ = 0 for 

i _-__3 we get by (20) that ( b , s , - / 3 , b ~ ' s 2 ) 2 + ( a 2 - [ i ~ b T 2 ) s ~  = 
2 --2 a , s ~ + c t 2 s ] - 2 [ 3 , s , s z > = c ( s ~ + s ] )  and hence c t 2 - [ ~ b ~  = c .  Assume that 

a.+,  - [3~b-~ ~ >= c for n = 2,3,. • .. k - l and proceed by induction. We have that 

(bisi - a~+,S~+l) 2 + (ak+t -- a k+l)Sk+12 = ~, aiS~2 __ 2 jSiSi+, >-- C S 
i ~ 1  i ~ |  i = 1  

(we p u t s t = 0 f o r i > k + l ) .  

Now let sk+l=l  and s j = a j + , b i ' s j . ~  for l<=j<=k.  Then we get that 

ak+ , -  a~+, ~- a~+,-/3~b~2_-__ c. It also follows that 0<inf._-,{la.+, t, lb. I}= < 

sup.__-,{la. [. Ib.I}<~ and therefore if x. = a . e . - b . e . + , ,  then the operator 

T: 12 ~ span{x.} defined by Tei = x~ is invertible and hence, by the Proposition, 

either (C,) or (C2) is satisfied with b~ replaced by b~a 7'. This proves Corollary 2, 

which has probably been proved before by using matrix algebra methods. 

5. Concluding remarks 

(1) In the case of 12 both the Theorem and the Proposition can be proved by 

using the Gram-Schmidt orthogonalization of the system {x,}. This process 

results in a system which is very "close" to the biorthogonal system {.f. } of {x. }. 

A similar process can be used in connection with Corollary 2; using a 

Gram-Schmidt orthogonalization of {e.} with respect to the positive definite 

quadratic form F = F(x ,y) ,  we get an orthonormal system {z.} with z. = 

X~'=~ai..e,. Define u : 1 2 ~ 1 2  by u ( z . ) = e ,  and put x . = u ( e . ) .  Then x. = 

X'~,  bj,.e~ and 

(x,,xj) =(ue , , ue~ )  = F(e , ,e~)  =/3m~.t,.j> if li - i t  -- l 
= ai if i = j 

= 0 otherwise. 
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It is easy to prove by induction that x. = a.e._~ - b .e .  where a, = 0. b. = 

(a.  - a ~ )  '/2 and a.+, =/3.b : ' .  Since u is invertible, {x.} is equivalent to {e.} and 

hence, by the Proposition. either D, or D2 is satisfied. 

(2) The proof of the Theorem is true also in the case of complex Ip spaces. 

(3) It seems to us that the proof yields the Theorem also in the case of 

reflexive Orlicz sequence spaces, however,  we did not check this case. 

(4) Note that almost diagonal systems have the property that each element 

has a two-points support  (i.e. if x = (xl, xz, x3.-" -) then x, = 0 for all i except  for  

at most two of them). The following example shows that the Theorem is false if 

we allow each element x. to have a three points support: let {x.} be the 

sequence in 12 defined by x. =e.-(1/2)l/2(e2.÷~+e2.÷:) .  Let  f , = e , . f 2  = 

e2,f2.+~ = e2.., +(1/2)'/2f. and f2 .+2 = ez.+:+(l/2)~/zf . .  Then (~,xj) = 8,.i and 

]If-II < 2'/2. Hence { x . , f . }  is a bounded biorthogonal system of 12 but {x.} is not 

equivalent to {e.}. Indeed, let s, = !, s . . ,  = 2s. + I and y. = 2'/2~'-"'.~+.~ . . . .  'x~. 

Then for each n, IIET=,y, II =< (1 + 2" • 2"-"') '/2 = 3 '/2. 

(5) The problem solved in this paper originated in [3]. It is a special case of 

the following question: Let  {e.} be the unit vector  basis of l.. 1 < p < ~, and let 
1% +2 {p.} be an incresing sequence of positive integers. Put x. = E~=o.+, ajej and 

assume that {x.} is a semi-normalized basis of span{x.}. Is {x.} equivalent to 

{e.}? 
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