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A STABILITY PROPERTY OF THE UNIT VECTOR
BASIS OF |,

BY
A. SZANKOWSKI AND M. ZIPPIN '

ABSTRACT

Let {e.} be the unit vector basis of [,, 1 <p <, and let x, = a.e. — b.e,.,.
Necessary and sufficient conditions are given for the operator T:l, —
span{x,} defined by Te, = x; to be invertible.

1. Introduction

In this paper we prove a stability theorem for the unit vector basis of I,
1 <p <. Two sequences {x,} and {y.} of elements of a Banach space X are
called equivalent if for every sequence {a.} of scalars, Za.x. converges if and
only if Za,y. is convergent. Stability theorems for bases in Banach spaces
usually state that if {e,} is a basis and {x,} is “‘not far” from {e.}, then {x.} is
equivalent to {e,} or has properties similar to those of {e.}. However, in most
cases (cf. [1], th. 1) “not far”” means that, in some uniform way, the elements of
{x.} are close to those of {e.} in norm. In contrast to these classical stability
properties we will discuss here a stability property where “not far” has a
combinatorial meaning rather than a geometric one.

Let {e.} denote the unit vector basis of [,, 1 <p < =. A sequence {x,}in I, is
called almost diagonal if for each n =1 x, = a.e, — b,e,.,..We call {x,} semi-
-normalized if 0 < inf, |x, || = sup. ||x.|| < . Let {x.} be a sequence of ele-
ments of a Banach space X and let {f,} C X*. The system {x.,,f.} is called a
bounded biorthogonal system if fi(x;) =8§;; and both {x.} and {f.} are semi-
-normalized.

Our main result is the following:

THEOREM. Let {x.} be a semi-normalized almost diagonal system in I,
1 < p <. Then the following statements are equivalent:

(a) there is a sequence {f,} C I* such that {x., f.} is a bounded biorthogonal
system.
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(b) {x.} forms a basis for span{x.,}.

(c) {x.} is equivalent to the unit vector basis {e.}. (span{x,} denotes the
closed linear subspace spanned by {x.}).

We conclude the introduction with the following three remarks:

ReMark 1. Let {x,} and {y.} be bases of the Banach spaces X and Y
respectively. Then {x.} and {y.} are equivalent if and only if the map T: X » Y
defined by T(Zt.x;) = Zt;y; is an isomorphism of X onto Y.

ReEMARK 2. The Theorem is false for p = 1. Indeed, let x, = e, — €,.,, let
{¢.} be the unit vector basis of ¢, and put f, = 27, ¢.

Then ||x, || =2 and ||f.]| =1 for all n and f.(x;) = &,;. Hence {x,,f.} forms a
bounded biorthogonal system and it is easy to check that {x.} is a basis for
span{x,}. However, the map T defined by Te, = x; is not an isomorphism,
because |[Zi. x| =2 and |2, e ]j=n for all n.

REMARK 3. The Theorem is trivially true for c¢,. Indeed, let
sup{|a.|,{b.|}= M <o, then |Stx; || = |Zaitie || + |Zbite. || = 2M ||Stee; || and
hence Ztx; converges whenever t; — 0. On the other hand, if Ztx; converges
then # —0 because inf, || x, [|>0.

2. The equivalence (a)<>(b) and a preliminary lemma

We begin this section by proving that the equivalence (a) <> (b) holds in a
quite general situation.

LemMMA 1. Let {e.} be a basis of a Banach space E, |le.|| =1, and let
Xn = Qun = butnri. Assume that 0<inf{|a,|,|b.|} = sup.{|a.|,|b. [} =M <
w. Then {x,} is a basis of span{x.,} if and only if there exist functionals
{f.} CE* such that {x.,f.} form a bounded biorthogonal system.

Proor. It is well known (cf. [2], p. 68) that if {x,} is a basis of X = span{x,}
then there exist {f.} C X* such that f.(x;) =8, and sup, ||x.]| |f. ] <. Con-
versely, let {x,, f.} be a bounded biorthogonal system with sup, ||f, || = M. Let P,
denote the projection defined by P, (S tie,) = 7 tie.. It is known (cf. [2], p. 68)
that sup, || P.||= K <®. Now, for any m <n and each 3., tx, € X we have
that
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This inequality proves that {x,} is a basis in view of ([2], p. 69). The proof is
thus complete.

Our next step is to reduce the proof of the Theorem to the case where
inf, {|a.|,|b.|}>0. In order to accomplish this we first prove

LemMa 2. Let {x.} be an almost diagonal sequence in l,, 1 <p <o, and let
{x..f.} satisfy (a). Then there exists a constant d >0 such that {x.} is
equivalent to the sequence {y.} defined as follows: y, = x, if |a.|,|b. |Z d; y» =
ase, if |b.|<d and y, = buen.. if |a.|<d.

Proor. We may assume without loss of generality that inf, || x. | = 1. Note
first, that if d is small enough and both min{|a.|,|b.|}<d and
min{|@u.1|, | basi|} < d are satisfied then either |a..,| < d or | b, | < d. Indeed, if
both |a...|=zd and |b.|=d then |a.|<d and |b..|<d; let f. =
(C1,€2,C3,+*) € I, = 1% Then 1 = f,(x,) = Culln — Cus1bs =dM +|Casi| M Where
M = Max {sup. ||f. ||, sup. || x.||}. Hence |c...|ZM~'(1-dM). On the other
hand, 0= fu(Xn+1) = Cas1Gns+1— Cns2busi and therefore |Cair| =
|Casabust|* |@nsi|'=dM -(1=d”)>. 1t follows that M7'(1-dM)=
dM(1—d”)7 which is absurd if d = d(M) is small enough.

In view of this remark and disregarding trivial cases we assume that there is
an increasing sequence {p(n)} of integers and d >0 such that

(2) Min{|ax|, |b«|}=d for all k& {p(n)}

(3) Min{|aym| |bow|} < d and Max{|@,m|, |Boe|} = (1—d?)? for all n.

4 if p(n+1)=p(n)+1 then either |bym|<d or |@ym+|<d. We will
show that the sequence {y.} defined by

w=x if k&i{pn)
= a,,(,.)e,,(,.) lf k = p(n) and IbP(")l < d

= b,,(,.)e,,(,,,ﬂ lf k = p(n) and |a,,(,.)| <d
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is equivalent to {x.}. Put q(n)=p(n) if |b,m|<d and g(n)=pn)—1 if
laym| < d and let Y, = span{y: }{ i)
It is easy to check that foreachm <n,x € Y,, andy € Y, we have that

&) lx+yll> =Nx| +y "

Also, for each n and any sequence {t,}{{,i)+1 of scalars we have

(6

QEI) L
L(xi—y) ” = ([a,,(,.,t,,(,,,l" + lbp(nﬂ)tp(nm'p )

i=q(n)+1

if qn)=pn)—1and gn+D=pn+1)
= lap(n)tp(n)l if CI(")=P(")_1 and CI("+1)=P("+1)"1
=0 if q(n)=p)and q(n+1)=pn+1)-1

= | bpmsntomens| if q(n)=p(n) and q(n + )=p(n +1).

It follows that

qn+1)

ti(xi - y:)” =d pr(n)(ztixi)‘

i=q(n)+1

qn+t)

+d !fp(nﬂ)(ztixi)l =2dM 2 txil
i=q(my+1
and therefore we get that
qn+1) qn+1) qn+1)
Q) a- 2DM) 2 x| = 2 Ly ” =(1+ ZdM) 2 x|
i=q(m)+1 i=qGn)+1 i=q(n)+1

In view of (5), (6) and (7) we have that

haid antb 14 nd q(n+l) p
> >ty =2 Lyl
n=1 i=q(n)+i n=t || i=q(n)}+i
® q(n+1) o q{n+1)
hence 2 2 x| =Y Liyij| +
n=1 i=q{n)+1 n=1 i=qn)+1
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o g(n+l) ©  qn+1)
+ 2 2 L(xi—y) “ = E L.y “
n=1 i=gi{n)+i n=1 i=g{n)+i

o a+) P\
+ (2 (ZdM X ) ) <[1+2dM (1 - 2dM)™].
n=1 i=q(n)+1
o qn+1)
2 ) t,y,“
n=1 i=q(n)+1
Similarly, one gets that
o q(n+1) 20 gn+1) 3 qn+1)
5 % wl|=]3 S s camra-2am |3 S )
n=1 i=q(n)+1 n=1 1=q(n)+1 n=1 i=q(n)+1

Assuming that d is small enough these inequalities prove the equivalence of
{x,} and {y,}. Lemma 2 is thus proved.

CoroLLarY 1. Let {x.} be a semi-normalized almost diagonal sequence in
l,, 1 < p <. Then there is a constant d >0 such that {x,} is equivalent to the
sequence {z,} defined as follows:

zo=x, if min{|a.|, |b.|}Z=d
2, =de, + bse.., if |a.|<d
Z, = ase, +de,., if |b,|<d.

Proor. Define {y.}as in Lemma 2, then {x,} is equivalent to {y. } if d is small
enough. Therefore {y.} is also a semi-normalized almost diagonal sequence
satisfying (a). Using inequalities similar to (5), (6) and (7), we get that {y.} is
equivalent to {z,}.

3. Proof of (a) = (¢).

In view of Corollary 1 it suffices to consider almost diagonal sequences {x,}

with x, = a.e, — b.e... where 0 <inf,{|a.|, |b.|}. Therefore the proof of the
Theorem will be complete if we prove the following:

PropOSITION. Let {e,} be the unit vector basis of l,, 1 <p <w, and let

X, = e, — bse.., where inf | b, | =d > 0. Then the following assertions are equiv-
alent
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(A) {x.} is equivalent to {e.}.

(B) there is a sequence {f,} Cl% such that {x..f.} forms a bounded
biorthogonal system.

(C) There is a constant K >0 such that | b, | =K for all n and either

n—1 n-—1 q
(C) sup(1+ > b.«,)éK
n =1 | =k
or
n-—1 n-1 q e j —q
() SUP(1+Z b; )(2 ]—Ib.-| >§K where p~'+q~'=1.
n k=1 i=k j=n i=1

Prooe. The implication (A) — (B) is trivial. Let us prove (B) - (C). It is
easy to see that either span{x,} = [, or span{x,} is a subspace of codimension 1
of [,. If span{x,} =1, one can easily compute the biorthogonal functionals f,

n—1
and verify that f, = u, + 221 ([1 b;)ux where u, denotes the n-th unit vector of
i=k
L=1*¥(p"+q'=1). It follows that
n—1 n—1 q
®) +2 [{bf] =l =ac

where A =sup,||f.|. If span{x.}# !, then there is a functional f which
vanishes on span{x.}. It is easy to check that

f= u.+22(’_(_l b,»>_luk

and hence the series
-a

2 f[b

converges. Also, for each n,

f,.=c,.f+u,.+:2_ll (Ebi)uk

for some constant c,. It follows that

n-—

To+e(lln)

i=j

&)

Cn +"l;[l b,‘
i=1

q n—1
+2
j=2

i

So|" =l = a0

i=

+ el
ji=n

where A = sup., [|f.|. Put
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Tk=1+’~‘=2:‘,r=;l|bi IL[b.

i=1

-q —-q
1]

tk = 2
i=k

and

then we have that

(10) Ifa 1" =

n—1 q
Cn + I'[b,-' T.+|c.['t. = A"
i=1

One can easily verify that the minimum of the left hand side of (10) is attained
at

n—1
. = — b,) T'l‘/(q—l) T'll/(q~l)+ :‘/(q—l) —I.
c (U. ( t a1y
It follows that

A= ”fn “q = lﬁ b,-’q(tq/(q_”Tq + Tq/(q—l)tq)(Tl/(q-l)+ tl/(q—l))—l
i=1

s rT,.t,.(T,'."‘“ +edey,
i=1

Since

S, =

n—I1
Bl b.-rT,. and to+ T, = |f.]"
i=1

we get that for all n = 1

1) KoZ St = (1+
k

/)G

[1b
i=1

\

where Ko=2"'A"||f.||* This proves (B) - (C). It remains to prove the
implication (C) - (A). Assume first that (C,) is satisfied and let T be the
operator defined by Te, = x,. Itis clear that || T|| = 2K and we have to show that
T is invertible. Note that T*f, = u, and hence, it suffices to show that the
operator B: I, - I, defined by Bu, = f, is bounded. Put B} =II{.;b;, then,be-
cause f, = u. + 2= B 'u;, the operator B has the following matrix representa-
tion with respect to the basis (u.):
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"1 Bi Bi Bl---- BT ]
1 B! B B:™!
1 B3
5= 1
0 1

Let So= I = the identity on [, and let

k

——hmney

07 O,"',O Bl; 0
S = IZ(H

0 B%*

for k =z 1. Obviously || Sk || = max,=,|Bi"~'|and B = =%.0S«. We will prove that
35| Sk || converges by showing that

(12) =%., max,s |B5*""| is convergent.

It follows from (C,) that

(13) K =2X\_,|B%|* for all n.

Let m be an integer for which

(1499 me ™ >K
and let i(n)=max{1<j=n: |B}|=e'}.
(13) and (14) imply that

(15 i(n)=zn-m.
Putn =i(n,0),i(n)=i(n,1)and i(n,k + 1) =i(i(n, k)) for k = 1. We thus have
that i(n,)=Zi(n,N=i(n, )= --- Zi(n,s)=1 where

(16) i(nk)—i(nk+1D)=m, i(n,s)~1=m and |Bi{ni’,)|=e".
Given j =n we canfind k such that i(n,k + 1)<j=i(n,k)andso i(n,k)—j<
m, and k Z E((n —j)/m) where E(r) denotes entier r for every real r. Since
B} = (L2 Bigm ALY b)) we have that
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17y |B7|=K"exp(— E((n —j)/m)).
It follows that max;=/|B{"~'|= K™ exp(— E(k — 1)/m)) hence

IB|=1 +K'“2| exp(— E((k — I)/m)) = c.

This proves that T is invertible and that for any n and any sequence (s;) of
scalars we have that

(18) ¢!

n
‘Esiei
i=1

n
= H EI 8iX;
i=

= 2K” i S;€;
i=1

This proves (C,) = (A). Now assume (C,). For each 1=k =n put & =
Cnszk — biiik€nnk = — bl iXa— and let f-l = Un+i1, fz = U, + b;lun+la and, for
2=k =n, let ﬂ = Uniz—k + Drloilluiri +bto b isillnsa + 0+
(n]!(;llbn+l—k+j)un+l-

It follows from (C,) that

-4

el =14 | Busai | * + | Busaibnssic| ™+ +

k=1
n bn+l—k+j
j=1

(19)

]_[ b; |_q) = sup

i=1

n+1-k q n
nl'( 3

i=1 i=n+l-k

It follows that (X, )i, is an almost diagonal sequence with respect to the basis
(€nv2— )i} which is a unit vector basis of 12”'. Moreover, (C,) implies that {£, fi }
is a bounded biorthogonal system such that

Iflle =1+ 2

n—1
J

n—|l q . _
2 5,' = K where b,' = ;:.2_,' and I<_l = bi = d_].
i=f

Hence the argument for (C,) — (A) shows that

¢ = =24

n
E $i€n 2
i=

n
2 $:X;
§

n
Z $:€n+2—i
1

for some constant ¢ = ¢(d, K) independent on n. Since & = — b 41—« * Xavi—k
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we get that {x,} is also equivalent to {e.}. This completes the proof of the
Proposition and so the Theorem is fully proven.

4. An application to quadratic forms

Let R = (r;;) be an infinite real symmetric matrix and let F = F(s,,5,,-"*) =
3, Zrys:5; be the quadratic form wich corresponds to R. F is said to be positive
definite if there is a constant ¢ >0 such that

0 F(s.,s;,---)zc(zs?)

i=1
for all sequences of reals {s,.}. We are interested in the problem, when is the
quadratic form F(s,, sz, ) = =7 ais; — 2272, Bisisi+1 which corresponds to the
matrix

o -8 0]
B a2 =B
R = —-B: a =B
0 B a
» K

positive definite? It is easy to see that “‘small”” changes in the values of a; and §;
do not affect the positivity of F, therefore we will state our result as follows:

CoROLLARY 2. Let F =F(s), 82, -)=2Taisi— 2271 Bisisi1 with 0<d =
inf,{|a.}, | B.|} = supa{|ax|, | B.|} = M <. Then F is positive definite if and
only if the following conditions are satisfied
(Do) Put a,=0, by=al* and for nz1 let a,..=pB.b.' and b..=
(@ns1— a2.1). Then there is a positive constant K such that o, — a1 Z K* and

either
2
)<-

k

n—1

(D)) sup(l +22
or

(Dy) Sl,l‘p (l + :22

n—-1 .
n ba;
i=k

)E

nl:[l ba;'
=k

2
)<=

aib,-_l
1
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Proor. Let (Do) be satisfied, then bia;., = B8; and therefore F(si, s, )=
Sai+ bD)si—2Zbai.sis:.. We also have that 0<inf..,{|a..|, |b.|}=
sup.=i{|a.|, |b.|} < and hence if x, = a.e, — b.e,.., then, in the [,-norm
|Zsix:|f = F(s\, 5, ). It follows that F is positive definite if and only if the
operator T: [, - span{x,} defined by Te; = x, is invertible. We know by the
Proposition that T is invertible if and only if either (C,) or (C.,) is satisfied (with
b;/a; replacing b; there). This proves the sufficiency of our condition. Now
suppose that F is positive definite. Then putting s, = 8,b7%, 5. =1 and s; = 0 for
izZz3 we get by (20) that (b,s,—Bibi's:))’+(aa—BibT)si=
aisi+axsi—2Bisis:Zc(si+s3) and hence a,—Bib°=c. Assume that
Q. —Bib7=c forn =2,3,-- -,k — 1 and proceed by induction. We have that

=

K+ K K+l
= 2
(bisi = @i18ia)* + (@t — Alet) Skt = aiSi—22 :SiSn;EC( Sf)
1

i=1 i=1

i i=1

(we put 5; =0 for i >k +1).

Now let si.i=1 and s; =ajub;'s; for 1=j=k Then we get that
Qi — b= — BibiPZc. It also follows that 0<inf.z({|ansl, |ba|}=
SUPn=:i{|@. |, |ba|} <® and therefore if x, = ase, — b.e..1, then the operator
T: I, - span{x, } defined by Te; = x; is invertible and hence, by the Proposition,
either (C)) or (C,) is satisfied with b; replaced by b.a7'. This proves Corollary 2,
which has probably been proved before by using matrix algebra methods.

5. Concluding remarks

(1) In the case of [, both the Theorem and the Proposition can be proved by
using the Gram-Schmidt orthogonalization of the system {x.}. This process
results in a system which is very *“close’ to the biorthogonal system {f. } of {x.}.
A similar process can be used in connection with Corollary 2; using a
Gram-Schmidt orthogonalization of {e,} with respect to the positive definite
quadratic form F = F(x,y), we get an orthonormal system {z.} with z, =
3.1 aine. Define u:l,—> 1, by u(z,)=e, and put x, =u(e.). Then x, =
S bine and

(%, x;) = (ue;, ue;) = F(e, &) = Binay if Ii "” =1
=0 otherwise.
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It is easy to prove by induction that x. = a.e.-, — b.e, where a,=0, b, =
(a. —a?)'” and a,., = B.b'. Since u is invertible, {x.} is equivalent to {e,} and
hence, by the Proposition, either D, or D, is satisfied.

(2) The proof of the Theorem is true also in the case of complex [, spaces.

(3) It seems to us that the proof yields the Theorem also in the case of
reflexive Orlicz sequence spaces, however, we did not check this case.

(4) Note that almost diagonal systems have the property that each element
has a two-points support (i.e. if x =(x,, X2, X,,- - *) then x; = 0 for all i except for
at most two of them). The following example shows that the Theorem is false if
we allow each element x, to have a three points support: let {x.} be the
sequence in [, defined by x,=e, —(1/2)"*(es.+ + €2m+2). Let fi=e, fo=
€1, frne1 = €2+ (1/2)"?f, and frn.2 = €302+ (1/2)"*f.. Then (f,x;)=8,; and
|lf. || =2'". Hence {x., f.} is a bounded biorthogonal system of /, but {x,} is not
equivalent to {e.}. Indeed, let 5,=1, §,., =25, + 1 and y, = 2" -Zh? "'y,
Then for each n, [[Z7_,y || =(1+2" - 20"")"? = 3",

(5) The problem solved in this paper originated in [3]. It is a special case of
the following question: Let {e,} be the unit vector basis of /,, ] <p <, and let
{p.} be an incresing sequence of positive integers. Put x, = Z2:2.,, a;¢; and
assume that {x,} is a semi-normalized basis of span{x.}. Is {x.} equivalent to

{e.}?
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